
KRAFT: K-associative Relative Addressing Flash Transition Layer

Dongho Kang, Jaeseok Park, Ilwoong Kim, Ingeol Lee, Sungho Kang

Yonsei Univ.

{fourier2, bbajaepjs, woong, keor}@soc.yonsei.ac.kr, shkang@yonsei.ac.kr

Abstract

In NAND flash based storage system, a software

module between file system and NAND flash called

Flash Transition Layer (FTL) is necessary. In this

paper, a new FTL called “K-associative Relative

Addressing FTL (KRAFT)” is proposed. The goal of

this study is to achieve fast response time and high

R/W performance. With an efficient merge policy and a

novel addressing scheme, KRAFT reduces the merge

cost drastically and utilizes twice as much log blocks.

Simulation results show that KRAFT surpasses recent

FTLs in term of response time and R/W performance.

Keywords: Flash Transition Layer, NAND Flash.

1. Introduction

NAND flash has been deployed as data storage for

various computing systems because of the low power

consumption and the high performance. However,

NAND flash has no capability of overwrite, but it only

provides page-unit program and block-unit erase. So, a

time-consuming block-unit erase must be done before

executing rewrite for a page. To relieve this weakness,

a software module between file system and NAND

flash called FTL is introduces. The purpose of FTL are

mapping logical address to physical address in a way

that is suitable to the characteristics of NAND flash,

and optimizing its performance at the same time.

Recent FTLs can be classified into demand based

FTL and log block FTL. Generally, log block FTLs

show batter read performance because demand based

FTLs have table-caching delay [1]. However, log block

FTLs may suffer from inconsistent response time and

limited log blocks [2] [3] [4]. This paper proposes a

new log block FTL, K-associative Relative Addressing

FTL (KRAFT), which provides fast response time and

high R/W performance. With its efficient merge policy

and a novel addressing scheme, KRAFT reduces merge

cost significantly and utilizes much more log blocks.

2. KRAFT

KRAFT ensures fast response time and high R/W

performance with a new merge policy described in

Section 2-A, and it utilizes more number of log blocks

than conventional FTLs with a relative addressing

scheme as shown in 2-B.

A. Merge Policy

For the goal of this study, KRAFT focuses on the

effective associativity control and the switch efficiency

optimization. Algorithm 1 shows how write operation

is performed and presents the merge policy of KRAFT.

Algorithm 1: Write

1:00 Find log block associated with issued data block A_Log ;

2:00 If (A_Log found)

3:00 | If A_Log is full)

4:00 | | If (A_Log is Serial) Switch A_Log ;

5:00 | | Else Full-Merge A_Log ;

6:00 | Else /* L_Log found, Write without increasing associativity */

7:00 | | If (LPN is 0)

8:00 | | | If (A_Log is Serial And switch cost for L_Log is low)

9:00 | | | | Switch A_Log ;

10: 0| | | | Find free Log F_Log ;

11: 0| | | | Append data to F_Log ; /* make a new serial log */

12: 0| | | Else

12: 0| | | | Append data to A_Log ; /* break seriality of A_Log */

13: 0| | Else

14: 0| | | If (A_Log is Serial And Top < LPN And Fill cost is low)

15: 0| | | | Fill empty pages between A_Log_Top and LPN

16: 0| | | | Append data to LSN ; /* sustain seriality of A_Log */

17: 0| | | Else

12: 0| | | | Append data to A_Log ;

18: 0Else /*No Log is associated with issued data block*/

19: 0| Find lowest associative log L_Log ; /* balancing associativity */

20: 0| If (lowest associativity ≥ K) /* K : the maximum associativity */

21: 0| | Select victim log V_Log

22: 0| | If (V_Log is Serial) Switch V_Log ;

23: 0| | Else Full-Merge V_Log ;

24: 0| Else

25: 0| | If (LPN is 0)

26: 0| | | If (L_Log is Free) Append data to L_Log ; /* a new serial log */

27: 0| | | Else Append data to L_Log ;

28: 0| | Else

29: 0| | | If A_Log is Free And Fill cost is low)

30: 0| | | | Fill empty pages between 0 and LPN with valid data ;

31: 0| | | | Append data to L_Log ; /* sustain seriality of A_Log */

32: 0| | | Else

31: 0| | | | Append data to L_Log ;

- Associativity: KRAFT is based on full associativity

[2] which provides high space utilization of log blocks

but incurs a huge merge cost because too many data

blocks can be associated with a log block. So, KRAFT

limits the number of data blocks associated with a log

block to a user defined value K, and it writes data to the

log block already associated with the issued data block.

If such a log block cannot be found, log block with the

lowest associativity is selected. The recommended K is

8 to 16 which ensures fast response time and high

space utilization at the same time.

- Switch operation: If a log block is serially written

from page 0 to the top, KRAFT can perform a switch

operation instead of full-merge operation [3]. The

merge operations of KRAFT are shown in Figure 1.

Figure 1: Merge operations in KRAFT

In switch operation, KRAFT copies valid pages from

the associated data block to the log block. In full-merge

operation, however, KRAFT copies valid pages from

multiple blocks to the newly located blocks. The costs

of each operation are compared in Table 1.

Table 1: Cost comparison of switch and full-merge

Operation Cost

Switch Tc × v_page + Te

Full-merge (Nd + 1) × (Tc × v_page + Te)

Te: time for erase Tc: time for copying a page

v_page: pages with the valid data Nd: number of associated data block

To maximize this switch efficiency, KRAFT manages

log blocks to sustain their seriality as much as possible

as shown in Algorithm 1.

- Victim Selection: If the lowest associativity hits the

limit, K, KRAFT selects a victim log block and

performs a merge operation. Since the switch operation

costs less time than full-merge operation, KRAFT

selects the mostly filled serial log block. If no serial log

block is found, a random log block is selected

according to LRU algorithm because less recently used

block is likely to holds less valid pages.

B. Relative Addressing

The performance of log block FTL highly depends on

the number of log blocks it can utilize. However,

conventional log block FTLs have suffered from the

lack of log blocks because the log space is managed by

a RAM-consuming page-level mapping.

In case of KRAFT, it utilizes more log blocks through

a relative addressing scheme. KRAFT holds mapping

information of each sector as a relative logical sector

number (RLSN) with a reference index (RI). RI

represents which logical block number (LBN) to

reference, and RLSN indicates the relative value,

respectively. To use this scheme, the number of

references must be limited. Fortunately, as described in

2-A, KRAFT restricts the associativity of log blocks, so

the relative addressing in each log block is possible.

The structure of the mapping table is shown in Figure 2.

Figure 2: Log mapping table of KRAFT

The maximum number of LBNs is K, and the range

of a RI and a RLSN are only 0 to K-1, and 0 to N-1,

respectively. So, this table occupies significantly less

space of RAM compared to the conventional mapping

table which holds physical sector address in absolute

value. This addressing scheme introduces extra RAM

access time for acquiring references, and ALU time for

calculating absolute address, but they are negligibly

small compared to the NAND flash R/W time. Figure 3

shows an example of accessing processes for PSN=71,

PSNN=82. The value of K is 4, and the flash block is

composed of 8 pages in this example.

Figure 3: Relative addressing access process

In the example of Figure 3, KRAFT took access

request for PSN 71(= 8×8+7). By looking up the 7th

entry of table 8 (RI = 4), KRAFT found the reference,

the 4th LBN of table 8, and run simple calculation to

find absolute address of logical sector, 448. LSN stored

in PSN 82 can be found in the same manner.

3. Experimental Results

In this section, experiments are conducted to

evaluate the performance of KRAFT. In the simulation,

a 64GB MLC NAND flash [5] is used, and OLTP,

Web traces from the SPC [6] are applied to compare

FAST [2], KAST [3], FFTL [4]. OLTP1, OLTP2 are

write-dominant (more than 50% of request is write) and

Web is read-dominant (less than 7% of request is write).

FAST, KAST, and FFTL uses 128 log blocks while

KRAFT utilizes 256 log blocks using the same size of

RAM thanks to the relative addressing scheme.

Figure 4: Merge cost comparison

Figure 4 shows the comparison of merge cost of each

FTL on a write-dominant workload. According to

Figure 4, KRAFT outperforms FAST and KAST in

term of merge response time due to the remarkable

associativity control and the switch efficiency. Though

FFTL incurred the lowest merge cost, KRAFT also

achieved very fast merge response time. It is shown

that KRAFT has average 6.7% slower response time

compared to FFTL, but the difference is negligible in

occasional events like merge request.

Table 2: Performance comparison
Test Data OLTP 1 OLTP 2 Web

Metrics
MRG

(ms)

LATE

(μs)

MRG

(ms)

LATE

(μs)

MRG

(ms)

LATE

(μs)

F
 T

 L

FAST 386.8 278 341.1 175 956.8 61.1

KAST 183.3 252 195.3 176 601.7 60.4

FFTL 111.6 260 106.2 171.2 591.9 60.4

KRAFT 119.9 198 121.8 151.1 600.3 60.4

LATE: Average latency of R/W MRG: Average merge response time

According to Table 2, KRAFT surpasses the previous

works in term of R/W performance. KRAFT executes

merge operation less frequently by utilizing more

number of log blocks. So, its write performance is

especially outstanding. However, any supremacy of

KRAFT can be found in read-dominant Web trace

because most log block FTLs has very high read

performance. Nevertheless, KRAFT is average 14%

faster than previous works in term of R/W performance,

and it also reduces the time cost for each merge

operation nearly as much as FFTL.

4. Conclusion

In this paper, a new log block FTL called KRAFT is

proposed. KRAFT has unique features that ensure fast

response time and high R/W performance. KRAFT

controls the associativity of log blocks and maximizes

switch efficiency through the merge policy. It also

makes advantage of more number of log blocks with a

novel address mapping scheme. Experimental results

show that KRAFT has fast response time like FFTL

and surpasses concurrent FTLs in R/W performance.

As a future work, an adaptive seriality management

scheme is being researched. If KRAFT tries to sustain

the seriality of a log block to which random data is

being written, this effort can degrade the performance.

So, KRAFT must aware the possibility of serial input

according to the previous input pattern to enhance its

performance.

Acknowledgement

This work was supported by the National Research Fou

ndation of Korea(NRF) grant funded by the Korea gov

ernment(MSIP) (No. 2015R1A2A1A13001751).

References

[1] Z. Xu, R. Li, and C.-Z. Xu, “CAST: A page-level

FTL with compact address mapping and parallel data

blocks,” in IEEE 31st IPCCC, Dec. 2012, pp. 142–151.

[2] Lee S., D. Park, T. Chung, D. Lee, S. Park, and H.

Song . “A Log Buffer-based Flash Translation Layer

Using Fully-Associative Sector Translation,” IEEE

Transactions on Embedded Computing Systems,

Vol.6 ,2007,pp.18~es.

[3] H. Cho, D. Shin, Y. Ik Eom "KAST: K-associative

sector translation for NAND flash memory in real-time

systems" Proc. of DATE '09, pp. 20-24 April 2009.

[4] S.J. Kwon, H.-J. Cho, and T.-S. Chung, "Fast

responsive flash translation layer for smart devices,"

IEEE Trans. on Consumer Electronics, Vol. 60, No. 1,

pp.52-59, Feb. 2014.

[5] S. Electronics, K9G8G08U0A MLC NAND, 2007.

[6] SPC. http://www.storageperformance.org.

