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Abstract 
 

In NAND flash based storage system, a software 

module between file system and NAND flash called 

Flash Transition Layer (FTL) is necessary. In this 

paper, a new FTL called “K-associative Relative 

Addressing FTL (KRAFT)” is proposed. The goal of 

this study is to achieve fast response time and high 

R/W performance. With an efficient merge policy and a 

novel addressing scheme, KRAFT reduces the merge 

cost drastically and utilizes twice as much log blocks. 

Simulation results show that KRAFT surpasses recent 

FTLs in term of response time and R/W performance. 
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1. Introduction 
 

NAND flash has been deployed as data storage for 

various computing systems because of the low power 

consumption and the high performance. However, 

NAND flash has no capability of overwrite, but it only 

provides page-unit program and block-unit erase. So, a 

time-consuming block-unit erase must be done before 

executing rewrite for a page. To relieve this weakness, 

a software module between file system and NAND 

flash called FTL is introduces. The purpose of FTL are 

mapping logical address to physical address in a way 

that is suitable to the characteristics of NAND flash, 

and optimizing its performance at the same time. 

Recent FTLs can be classified into demand based 

FTL and log block FTL. Generally, log block FTLs 

show batter read performance because demand based 

FTLs have table-caching delay [1]. However, log block 

FTLs may suffer from inconsistent response time and 

limited log blocks [2] [3] [4]. This paper proposes a 

new log block FTL, K-associative Relative Addressing 

FTL (KRAFT), which provides fast response time and 

high R/W performance. With its efficient merge policy 

and a novel addressing scheme, KRAFT reduces merge 

cost significantly and utilizes much more log blocks. 

2. KRAFT 
 

KRAFT ensures fast response time and high R/W 

performance with a new merge policy described in 

Section 2-A, and it utilizes more number of log blocks 

than conventional FTLs with a relative addressing 

scheme as shown in 2-B. 
 

A. Merge Policy 

For the goal of this study, KRAFT focuses on the 

effective associativity control and the switch efficiency 

optimization. Algorithm 1 shows how write operation 

is performed and presents the merge policy of KRAFT. 

 

Algorithm 1: Write 

1:00 Find log block associated with issued data block A_Log ; 

2:00 If (A_Log found) 

3:00 | If A_Log is full) 

4:00 |  | If (A_Log is Serial)  Switch A_Log ; 

5:00 |  | Else Full-Merge A_Log ; 

6:00 | Else /* L_Log found, Write without increasing associativity */ 

7:00 |  | If (LPN is 0) 

8:00 |  |  | If (A_Log is Serial And switch cost for L_Log is low) 

9:00 |  |  |  | Switch A_Log ; 

10: 0|  |  |  | Find free Log F_Log ;  

11: 0|  |  |  | Append  data to F_Log ;  /* make a new serial log */ 

12: 0|  |  | Else  

12: 0|  |  |  | Append data to A_Log ; /* break seriality of A_Log */ 

13: 0|  | Else 

14: 0|  |  | If (A_Log is Serial And Top < LPN And Fill cost is low) 

15: 0|  |  |  | Fill empty pages between A_Log_Top and LPN 

16: 0|  |  |  | Append  data to LSN ;  /* sustain seriality of A_Log */ 

17: 0|  |  | Else 

12: 0|  |  |  | Append data to A_Log ; 

18: 0Else /*No Log is associated with issued data block*/ 

19: 0| Find lowest associative log L_Log ; /* balancing associativity */ 

20: 0| If (lowest associativity ≥ K ) /* K : the maximum associativity */ 

21: 0|  | Select victim log V_Log 

22: 0|  | If (V_Log is Serial)  Switch V_Log ; 

23: 0|  | Else Full-Merge V_Log ;  

24: 0| Else 

25: 0|  | If (LPN is 0) 

26: 0|  |  | If (L_Log is Free) Append data to L_Log ; /* a new serial log */ 

27: 0|  |  | Else Append data to L_Log ; 

28: 0|  | Else 

29: 0|  |  | If A_Log is Free And Fill cost is low) 

30: 0|  |  |  | Fill empty pages between 0 and LPN with valid data ; 

31: 0|  |  |  | Append data to L_Log ; /* sustain seriality of A_Log */ 

32: 0|  |  | Else  

31: 0|  |  |  | Append data to L_Log ; 



- Associativity: KRAFT is based on full associativity 

[2] which provides high space utilization of log blocks 

but incurs a huge merge cost because too many data 

blocks can be associated with a log block. So, KRAFT 

limits the number of data blocks associated with a log 

block to a user defined value K, and it writes data to the 

log block already associated with the issued data block. 

If such a log block cannot be found, log block with the 

lowest associativity is selected. The recommended K is 

8 to 16 which ensures fast response time and high 

space utilization at the same time. 

- Switch operation: If a log block is serially written 

from page 0 to the top, KRAFT can perform a switch 

operation instead of full-merge operation [3]. The 

merge operations of KRAFT are shown in Figure 1. 
 

 
Figure 1: Merge operations in KRAFT 

 

In switch operation, KRAFT copies valid pages from 

the associated data block to the log block. In full-merge 

operation, however, KRAFT copies valid pages from 

multiple blocks to the newly located blocks. The costs 

of each operation are compared in Table 1. 
 

Table 1: Cost comparison of switch and full-merge 

Operation Cost 

Switch Tc × v_page + Te 

Full-merge (Nd + 1) × (Tc × v_page + Te) 

Te: time for erase                                Tc: time for copying a page 

v_page: pages with the valid data       Nd: number of associated data block 
 

To maximize this switch efficiency, KRAFT manages 

log blocks to sustain their seriality as much as possible 

as shown in Algorithm 1. 

- Victim Selection: If the lowest associativity hits the 

limit, K, KRAFT selects a victim log block and 

performs a merge operation. Since the switch operation 

costs less time than full-merge operation, KRAFT 

selects the mostly filled serial log block. If no serial log 

block is found, a random log block is selected 

according to LRU algorithm because less recently used 

block is likely to holds less valid pages. 
 

B. Relative Addressing 

The performance of log block FTL highly depends on 

the number of log blocks it can utilize. However, 

conventional log block FTLs have suffered from the 

lack of log blocks because the log space is managed by 

a RAM-consuming page-level mapping. 

In case of KRAFT, it utilizes more log blocks through 

a relative addressing scheme. KRAFT holds mapping 

information of each sector as a relative logical sector 

number (RLSN) with a reference index (RI). RI 

represents which logical block number (LBN) to 

reference, and RLSN indicates the relative value, 

respectively. To use this scheme, the number of 

references must be limited. Fortunately, as described in 

2-A, KRAFT restricts the associativity of log blocks, so 

the relative addressing in each log block is possible. 

The structure of the mapping table is shown in Figure 2. 

 
 

 
 

Figure 2: Log mapping table of KRAFT 

 

The maximum number of LBNs is K, and the range 

of a RI and a RLSN are only 0 to K-1, and 0 to N-1, 

respectively. So, this table occupies significantly less 

space of RAM compared to the conventional mapping 

table which holds physical sector address in absolute 

value. This addressing scheme introduces extra RAM 

access time for acquiring references, and ALU time for 

calculating absolute address, but they are negligibly 

small compared to the NAND flash R/W time. Figure 3 

shows an example of accessing processes for PSN=71, 

PSNN=82. The value of K is 4, and the flash block is 

composed of 8 pages in this example.  

 

 
 

Figure 3: Relative addressing access process 



In the example of Figure 3, KRAFT took access 

request for PSN 71(= 8×8+7). By looking up the 7th 

entry of table 8 (RI = 4), KRAFT found the reference, 

the 4th LBN of table 8, and run simple calculation to 

find absolute address of logical sector, 448. LSN stored 

in PSN 82 can be found in the same manner. 

 

3. Experimental Results 
 

In this section, experiments are conducted to 

evaluate the performance of KRAFT. In the simulation, 

a 64GB MLC NAND flash [5] is used, and OLTP, 

Web traces from the SPC [6] are applied to compare 

FAST [2], KAST [3], FFTL [4]. OLTP1, OLTP2 are 

write-dominant (more than 50% of request is write) and 

Web is read-dominant (less than 7% of request is write). 

FAST, KAST, and FFTL uses 128 log blocks while 

KRAFT utilizes 256 log blocks using the same size of 

RAM thanks to the relative addressing scheme. 

 
 

 
Figure 4: Merge cost comparison 

 

Figure 4 shows the comparison of merge cost of each 

FTL on a write-dominant workload. According to 

Figure 4, KRAFT outperforms FAST and KAST in 

term of merge response time due to the remarkable 

associativity control and the switch efficiency. Though 

FFTL incurred the lowest merge cost, KRAFT also 

achieved very fast merge response time. It is shown 

that KRAFT has average 6.7% slower response time 

compared to FFTL, but the difference is negligible in 

occasional events like merge request. 
 

Table 2: Performance comparison 
Test Data OLTP 1 OLTP 2 Web 

Metrics 
MRG 

(ms) 

LATE 

(μs) 

MRG 

(ms) 

LATE 

(μs) 

MRG 

(ms) 

LATE 

(μs) 

F
 T

 L
 

FAST 386.8 278 341.1 175 956.8 61.1 

KAST 183.3 252 195.3 176 601.7 60.4 

FFTL 111.6 260 106.2 171.2 591.9 60.4 

KRAFT 119.9 198 121.8 151.1 600.3 60.4 

LATE: Average latency of R/W      MRG: Average merge response time  
 

According to Table 2, KRAFT surpasses the previous 

works in term of R/W performance. KRAFT executes 

merge operation less frequently by utilizing more 

number of log blocks. So, its write performance is 

especially outstanding. However, any supremacy of 

KRAFT can be found in read-dominant Web trace 

because most log block FTLs has very high read 

performance. Nevertheless, KRAFT is average 14% 

faster than previous works in term of R/W performance, 

and it also reduces the time cost for each merge 

operation nearly as much as FFTL.  

 

4. Conclusion 
 

In this paper, a new log block FTL called KRAFT is 

proposed. KRAFT has unique features that ensure fast 

response time and high R/W performance. KRAFT 

controls the associativity of log blocks and maximizes 

switch efficiency through the merge policy. It also 

makes advantage of more number of log blocks with a 

novel address mapping scheme. Experimental results 

show that KRAFT has fast response time like FFTL 

and surpasses concurrent FTLs in R/W performance. 

As a future work, an adaptive seriality management 

scheme is being researched. If KRAFT tries to sustain 

the seriality of a log block to which random data is 

being written, this effort can degrade the performance. 

So, KRAFT must aware the possibility of serial input 

according to the previous input pattern to enhance its 

performance. 
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